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and the equation of state 

Z=Z,(lf i 
q=1 

m m 2 

C tm ~ ~ r)ijSXffi X:~ ~~~)~l] 
m=o z=o k=O T 

From these recurrent relationships we can obtain (by equating terms with equal powers 

of t) the expressions for coefficients of series (3.7). The analysis of the latter shows 
their convergence, since they are majorized by the convergent series 

~~~~~/(~*2}+~/(2.3)+ . ..I 

The radius of convergence of series (3.7) is determined by the interval 0 < t < 1 ikf-' 1, 
where M is the maximum value of the m-th derivative of input data, The existence 

of solution of the Cauchy problem is thereby proved. Its uniqueness follows from the 

uniqueness of the specification of input data. 
Thus Weber equations in some particular cases (stationary periodic flows) yield very 

simple equations which can be solved by conventional analytical methods. 
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The analytical method of calculation of a thee-dimensional boundary layer in 
a compressible fluid stream is considered. The method is based on the use of 
successive approximations and is similar to that used in the case of incompressible 
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fluid [l]. Results of this approximate analysis are compared with those obtained 

by the method of finite differences. 

1. In an arbitrary system of curvilinear coordinates attached to a streamlined body 
the system of equations defining the three-dimensional boundary layer in a compressible 

fluid is of the form [Z] 

where gij are components of the metric tensor; ZL, CO and u are velocity components 
along the axes I& rj and 5 ; H is the total enthalpy ; p is the density ; T is the tem- 
perature ; p is the pressure ; p is the viscosity coefficient; cp is the specific heat at 

constant pressure, and CF is the Prandtl number. The system of equations (1.1) is closed 
by the equation of state p = pRT. Coefficients Ai and Bi (i = 1,2,3,4) are deter- 

mined by the geometry of the body and the external flow [Z]. 

System (1.1) is solved for the following boundary conditions: 

U-l:~~~zzO, H == H* for 5 = 0 (1.2) 

u -+ u,, CO --t o,, H -+ H, for 5 + 00 

where the subscripts e and 0 relate to parameters of the stream at the external boundary 

of the boundary layer and at the surface of the body. These boundary conditions corre- 
spond to a boundary layer of an isentropic external flow. 

Using ~ansformations similar to those of Dorodnitsyn we reduce system (1.1) to the 

form convenient for integration 
---r 

E _I = E, 91= 7, h=.&$+dS (1.3) 

0 

where CC 6 J-I) is a certain function whose selection will be discussed below. We pass 
from the u~nown functions U, w, u and H to the new variables E (El, Q, h), 

G (Ei, r(r, A), K (Er, ~1, A) and 8 (El1 rh, h) by using formulas 



where S (E, 9) is an arbitrary function of variables % and 7. Here and subsequently 
subscripts 1 at Er and ?jI are omitted. 

As the result of substitutions (I. 3) and (1.4) system (1.1) assumes the form 

$- -{- NI* (E” - P) + N,“G” -+ Ns”EG -F_ 0.5) 

= K -g -t Ml* (E” - Pf -/- ~2~G2 f M3*EG + 

N,E$ -I- N,(G + rpE)+- 

a I ae 
ah CT ah i ) ae -- =K~+~(6~i~6~o~&~(E2+~2(G+cpE)“t- 

k .= (1 + Zgr+~ cos &, --t p%p”)(l. + 2 / (y - f)h~V;~) 

cos 90 = g12 I 1/m22 

where y is the ratio of specific heats (y = cp / c,), M, is the Mach number at the 

external boundary of the boundary layer, and G is the Prandtt number. Coefficients 

Nr* , N2*, iVs*, Ml*, &if,*, h!f3*, Pr* and Pz* depend only on E and q, The ex- 
pressions for these coefficients appear in [Z]. 

As the result of transformations the boundary conditions assume the form 

E =G=K=O-==O for A-_O (1.6) 

E--+1, G--+0, 6+1 for h 3 cxl (X.7) 

The components of friction at the wall and the heat flux are determined by formulas 

(&s = 0) air 
TI -_. P ag I 

&O 
c_o ) % = FL ag I Leo’ 

Integrating the equations of system (1.5) with respect to the h-coordinate from some 
value of that coordinate to infinity and allowing for the boundary conditions (1.7). we 
obtain 
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- 1 g = - K (E - 1) + (PI” + Nl*) ell + N1*el + (1.8) 

(P,* + Ns*) ‘%I+ Nl* { (1 - F) dh + Nz*& - P2*e2 + 
A 

N 4~+j&~+cpN$$! 

- I$= - KG + MI* (%I + 01 -I- [Cl - F) dk)+ (P,* + 
A 

Mz*) es2 + (PI* + M,*) h1 f N, 2$+N,Z$+rp~,f$ 

1 a0 -e-z 
d aa -K((8-I)+ + ~-(ik,,,~rE2~Ba(G+~E)P+ 

28 ~0s $0 (G + cpE) El + ,p1*& + Pz*b + 

N4 $13~~ + N, F + ‘PN, f$ + N& a In $- ‘4 + 

N, (b + fed a In (&- ‘0) 

ah’ -- ah =PP1*E+P,*G+N,$+N,$+cpN,$ 

where 
m 

s (1 - F) ah = p1 (0, -t ell) + wh + hb - (1 - to) (1 + ash 
A 

*e2 M 2 

p1 = 2He - UC* = (7 - I>+-, 
61 = 

2i3,, (co9 ‘PO + Bv) 
(I+ PP + 2Pv cm*) 

6, = p2p1 / (1 + B2’p2 + WP cm $0) 

Parameters e,, e,, es, eI1, e12, e21, e22, e,, and e,, are defined by 

e1 = s’ (E - I)& e2 = f ckik, e3 = [(e - 1) dh 
A A A 

ell = r (E - 1) Edh, tI12 = f (E - 1) Gdh, e21 = r EGdl 
A A A 

t322 = f G2dh, es1 = r (e - 1) Edh, es2 = Sp (e - 1) Gdh 
h A h 

We integrate system (1.8) with respect to the h-coordinate from zero to a certain value 
of h , taking into account the boundary condition (1.6) and set IJ = const. We then 

have the following expressions for velocity components and the enthalpy profile: 
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Solution of the derived nonlinear system of inte~o-diffe~ntial equations with boundary 
conditions 

E -3.1, 8+1, G-+0 for 1 --f 00 (1.10) 

is equivalent to the solution of system (1.5) with boundary conditions (1.6) and (1.7). 

System (1.9) with boundary conditions (1.10) is a complex nonlinear system of integro- 
differential equations, which we solve by the method of successive approximations. as in 

the case of an incompressible fluid [l]. 

2. Let us consider the system of equations (1.9). We neglect in that system the terms 
which contain derivatives with respect to coordinates E and q. Self-similar problems 
in a specific class of external flows reduce to this case. Hence the proposed method (let 
us call it the localized self-similar approximation) is valid in the case of self-similar 

solutions. The nature of solution variations is determined by coefficients M* it N* i’ and 
p k, which appear in the system of equations (2.2). 

The use of the method od successive approximations for solving boundary value prob- 
lems presents certain difficulties. Let us assume that the (n - I)-th approximation 

E@-l) (g, q, h), @-‘) (g, 11, A), 0(7+--l) (g, q, A) 
is known. 
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We substitute these functions into the right-hand parts of system (1.9). and after ap- 

propriate integration obtain the n-th approximation. The boundary conditions of the 
problem must be satisfied at each step of the iteration process. To have the boundary 

conditions (1.10) satisfied by the n-th approximation we introduce into the (n - l)-th 

approximation the unknown controlling functions in such a way as to have the boundary 
conditions approximately satisfied by that approximation. 

We substitute 

E(*-1) (I& ‘I, CA), bG@-‘) (E, ‘I, ch), d[B@-‘) (E, q, CA) - E (=-1) (h ‘I, A)] 

(c = c (h q), b =r b (E, v), d = d (ET rl)) 

in the right-hand parts of equations of system (1.9). respectively, for 

ZP-~) (E, ‘1, A), G@-l) (k, 7, A), W-1) (g, q, a) - EC*-l) (E, 7, A) 

Such introduction of controlling functions results in the boundary for E, G. and E - 8 
being maintained. 

In the localized self-similar approximation the system of equations (1.9) assumes the 

form 
- ,@+l) = &T’, (AZ) + b(“,@;’ + b(“,zC;“,’ + &“,@“h) (2.1) 
_ C;+i) = 6’“’ (&’ + b’“‘B;;’ + b@)2,$) + d’“‘@;‘) 

p+u 
a 

y+ 1--s 
kc (1 -to) 

(E’” + fi2 (G + c+L!?)~ + 28 cos $J,) x 

(G + cpE) E:+‘) = @’ (A!;’ + b(n)@“,’ + d’“‘C” + b@+j’“‘D@& 

First approximation expressions for coefficients A ldn), Bla(n), Cla(+l), Dla(n), A itr(ll) , 
etc. are given below. 

For the determination of the unknown controlling functions (c, b, d) we obtain the 

system of algebraic equations 

h(*) = (- 1) (Agab, + b’“‘@& + b”L’2C;;‘oo + &‘Di’;‘,)-’ (2.2) 

b’“‘2C;; 4. b@$$b, + &b, + d’“‘@;b, = 0 

3* - _= 
g@) 

A;& _t__ b”“‘@& + ,j”“‘C;;‘, _+ b’“‘d”“‘@;b, 

(5* = 1 /G -{- (1 - G) / [(I - t”) s (1 + 2/(7 - 1) MeZ)]) 

and for the parameters which define the thermal flux to the body and friction at the 

wall we have the expressions 

- I” 2c 1) __(I -= 1/m ( pvl* (I + P1)(O:;I, -j- 8::; - (I - t,)egJ) + (2.3) 

P,*t$;!,] i_ bfn) [(I’,* -t N3* + tilN1*) OK!,, - P,*8% t- 

b(n)2 p2* + t&N,*) f&2) 
XP’) 

- 1” 7 1 I 
A o = 1/6(“, {( 1 $- p1) @;:I, + e:: - (I - lo) 0% MI* + 

b@) (I’,* + M,* + 6M1*)6~)o + tin)2 (I’,” + M2* + 62M1*) ebb,) 
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~fjO”‘l, 
-10 - = 1/6(“,{(P,* - RI*) x 

Q3’l;“to ; d’“$$,) + P (P2” - R2”) (ego + Peg’,)] 

Let us assume that the n-th approximation is known. Then the (n + I)-th appro- 

ximation in the localized self-similar case is determined by the above formulas. We 

determine 6(n), b(*) and d(“) by the algebraic system and then find the velocity and 

enthalpy profiles, the resistance due to friction at the wall, and the heat flux to the wall. 

Note that for M, s 0 and t,, G 1, the formulas which define friction are of the same 

form as in the case of incompressible fluid. 
We eliminate 6(n) from the first and third of Eqs. (2.2) and determine the quantity 

8”). The substitution of d@) into the second of Eqs. (2.2) shows that the quantity b(n) 

is determined by the solution of a cubic equation. Various cases can be obtained by 
solving the cubic equation for b(n) and this results in the indeterminacy of solution, as 

in the case of incompressible fluid. 

Coefficients A,, A,, A, , etc. are double or iterated integrals of functions E, G 
and 0. The convergence rate of the iteration process depends on the selection of the 

initial approximation, which in the solution of complicated problems predetermines the 

success of the process, since it is necessary to obtain a reasonably accurate solution even 

in the first approximation. 

3. Let us specify the zero approximation as follows: 

E(O) = 1 - zo( Q, G(O) L= b(O) (zo( c) - Q( 5)) 

e(O) = 1 - zo( 5) + d(O) (20 ( 5) - 2-J 5)) 
where 

5 = c(E, r# = A/1/6(0, 

On the basis of (2.1) the solution in the localized self-similar approximation Et’), 
G(l) and f)(l) is defined by 

(3.1) 

Coefficients Aid@, &a(O), GAO’ and Dia(0) (i = 1,2,3) are defined by the fol- 
lowing explicit functions of zero approximation (2,) [ 11 (the case of p N T is con- 
sidered below) : 

/p=_p**Ao Ao 
1 A1 

- 1) - -+(zo - 1) - Il.0 ++ - 1)1+ (3.2) 
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Jo.0 + Jo. -1) - P,* (+- (21 - 1) - 2 (zz - 1)) 

C$ = (Nz* + 6&*) (Jo.0 - 2Jo. -I+ J-1. -1) 

DE = - N1* (1 

where 

Jo.o = 

J A-1 
0. -1 = - 2Au I 0.0, J+. _1 = T+(z~ (vr) - 1) 

We determine in a similar manner the functions 

(3.3) 

Bg = pr* 
I +pZ -1)--Z -+(z* - 1) + + @A - 1) + 

i ) 
+ 2 (21 - 1) - 2 (IUJ - II. -l,] +(Pl* + Ma” -i- wl+) x 

( 
2 (zx - I) - 2 (z, - 1) - Jo.0 + Jo. -1) 

cg = P2* {[I,. -1 $ - I,., * + Il.0 2 - 1,. -121 - 

1 

Ao AI 
_-2 

I( 

-4"(Zl_ 1) - +qzo- 1))) + 

(;;* + G2* $fl*h2) (Jo.0 - 2J,._1 + J-1.-1) 

L)(O> 
2a - --~lM1*(l-t,)(l~i-p,)(~(z'--i)- $3zz-$1) 

.4-l -_I_ 
A0 6% - 1) - II.0 + $ (z1 - 1)) + (3.4) 
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A0 A-1 --- 
Al Ao 

- + (20 - 1)) + J&O-- 23% -1f J-l. -1 

From these formulas we can find the expressions for coefficients Aia(0), Bi.(0), Cia(“) 

and Di(l(ol (i = 1, 2, 3) for 6 --t m. The coefficients of system (2.2) calculated in 

the first approximation are 

(3.5) 

- cg; = - p.,* * ( !z 
‘f 

+ ._z_ - 
I 8 

1) - (M,” + 6lM,*) (+ - &j 
D(o) 

‘dam - - ‘!dfl* (1 - to) (1 --t- Pl), A’“’ 
3Q5W = l/*P,” 

If the geometry of the body and the external flow parameters are known, it is possible 

to determine coefficients Mi*, Nt* and Pk’ (i = %, 2, 3; k = 1, 2) at any point 
of the body surface, and then determine b(O), c(O) and d(O) and the velocity profile in 

the considered approximation at any point of the boundary layer. The iteration scheme 

used in actual calculations for the successive determination of 6(O), c(O) and d co) is 

based on the following relationships: 

Dd(*) = (0.1592 + 23,) (I + ~~)~~* 4 0.~943~(O) w,* + (3.6) 

W,“) - O.O48(N,* i- &V1*)h(')2 

W = (0.25P: - 0.1035b(') P,* i- 0.3105d(*) PI* - 0.0997 X 
b(O) &0,p,*)~: 

#% = (B - (B" -j 4rlcy:q / 211 

A = 0.097 pa* i- 0.0478 (M;* -t- 6, - Ml*) 

B = 0.3105 P,* + 0.1943 (M$ t- 6,M*J 

C = M:(1 + p,)(O.1592 + 0.25to - 0.25 (1 - t&Jo)) 

D = 0.25 (1 + p,)(l - t,)iV: -+- 0.3105Pf - 0.0997 b(O) P? 
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Setting b(O) equal zero in the first and second of relationships (3.6) we determine from 
these &(O) and Pa) , and then, using the third, we find b(O) l This process is repeated 
until these parameters are determined with the required accuracy. Having solved sys- 
tern (3.6) , we determine the components of friction at the wall and, also, the heat flux 
to the body. In the case of localized self-similarity for any arbitrary geometry of the 
body and external flow parameters we have 

Io~I,.=O = Jf Cj(ot {0.2336~~* + (0‘7978 - 0.5642 (1 - to)> :< 13.7) 

(1 + pl)~l* + b(o) (0.2095N3* -O.l125pt* + 0.2095W1*) - 
0.0711b@)2(Nz* + 6JV1*) - 0.322d"UV,*(i -t&l + PI)} 

JOgjl=o - If 6(01 @fI*(l + p,)(O.7978 - O.SSGZ(l -t,)) + 

0.2095~0)(~~* + MS* + 61M~*)-00.0711b(0)2(P,* -i- M2* + 
62M1*)- 0.322d@)M,*(l - to){1 -PI)) 

1 
ae 

0-K h_O= I 
bl/g(o){(PI* - &*)(0.2336 + 0.2095d"))- 

W(P," - R,*)(0.1125 + 0.0711&f"~)) 

4, I&t us consider the fIow in the Reighborh~ of a three-dimensional stagnation 
point in a system of coordinates whose origin is located at that point. Velocity compon- 
ents in the neighborhood of the stagnation point can be defined thus: 

U, = at, CO, = bq 

We select functions a($, q) and pig, i@ as follows: 

a:=E, p=q/E, tP=@e/B%=bfa 

Coefficients ML* , Nt* and PH* (i = 1, 2, 3; k = I, 2) are of the form 

iki,” ==$--rp, M,* =I, iIf,* =2q3, Ni*=l, Ni* =O 

Nj = 0, P,” = 1 + cp, I$* = 1 

The formulas for calculating the coefficient of friction at the wall and of the heat 
flux to it are of the form (,!, = 1) 

8E 
- = [O&672 + 0.23369 + 0.5642t, -O.l125t@'~ - 0.322&')(1 -to)]@ 
8, 

(4.1) 

dG 
- = (rp(tp-- 1) (0.2336 + 0.56~2~o)~ ~0)(0.207 + 0.622f~)- 
ah 

0.1422b@‘)2 - 0.322dWp((cp - I)(1 - to)] c-' 
do - = [(I + rp)(O.2336 + 0.2073d@))- b(O) (0.1125 + 0.0711&'))] c-l 
dh 

where 

c = (0.25(1 + rp) - 0.1035b(o) + 0.3~05~{0)(~ + tp) - 

0.0997 b@‘, d(O))ff~ 

b(o) = 3.39[0,31 I- 0.699q - ((0.31 f 0.699cp)2 + 0.59($ - 

cp) (0.159 + 0.258, - 0.25(1 - to)d'o'))"l 

So) = (0.159 + 0.25t,)/(0.5606 - 0.25to + 0.3105cp -O.O997b@)) 



Introducing the notation E + G / cp =z h, and E = fA , we obtain a system of equations 
in variables h and f , which is of the same form as given in [3]. Results obtained by 

using system (4.1) were compared with those presented in [3] obtained by numerical 

integration of the input system of differential equations. Comparison of these results is 
presented in Fig. 1 which shows that the first approximation (solid lines) is in good agree- 

ment with the results of numerical calculations. The difference method proposed in [3] 

is not convergent for q < -0,5 . 

__r---- -- -- 

Fig. 1 Fig. 2 

Thus it is seen that even the first approximation yields good results in the case of a 
stagnation point of double curvature within the whole range of variation of parameter 

‘p , as well as in a wide range of variation of parameter to. The localized self-similar 

approximation provides not only a qualitative picture of the flow, but also. quantitative 

data which are in good agreement with those obtained in complicated problems by nu- 

merical calculations. 
Let us consider the problem of the boundary layer at a segmental body at an angle of 

attack around which flows a perfect gas. This problem was solved in [Z] by the method 

of finite differences. Let us compare results of numerical calculations with those obtained 

with the use of formulas (3.7) and (3.6) in a localized self-similar approximation. We 

assume the external flow to be known, hence coefficients Mi*, nr ,* and Pk* can be 

readily determined (i = 1,2,3; k = 1,2). Using (3.6) we determine functions b(“), c”) 

and 8’) and then from (3.7) we obtain the longitudinal and transverse components of 
friction and of the heat flux to the wall. The problem is solved for the same parameters 

of the oncoming stream as in [ 21, i.e. o = i5’, M, = CO, fi* = 30° and to = 0,5. 

A comparison of results obtained analytically for rl =2/~ x in the localized self-simi- 
lar approximation (solid lines) with those derived by the finite difference method isshown 
in Fig. 2. It is seen from this comparison that even for an essentially three-dimensional 
flow the approximate analytical method yields a good correlation. 
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We study the state of stress in an elastic half-plane in the presence of phase trans- 

formations caused by temperature variations at the points of the half-plane. Sepa- 

rately we consider the states of stress caused by the lack of homogeneity in the 
temperature field and the consequent volume changes taking place in the regions 

of phase transformations. 

Under the term “phase transformation” we understand the structural change in 

the crystal lattice which occurs when the body is heated above a certain critical 

temperature [ 1, 21. Here the purely thermal stresses are accompanied by the 
stresses associated with the volume change in the region undergoing phase trans- 

formations. Similar problems arise during the investigation of the stress states 

in the case of elastic tension and in the problems on inclusions. Such problems 
were studied by D, I. Sherman, Iu. A. Amen-Zade,and others. However in all the 

problems studied the region occupied by an inclusion was always completely con- 

tained within some external region. 
The present paper deals with the case in which the boundary separating the 

media has common points with the outer boundary of the region containing the in- 

clusion. The stresses and strains are assumed to satisfy the conditions of the lin- 

ear theory of elasticity, with the external region and the inclusion possessing the 

same elastic properties. 

let us assume that a steady-state plane temperature field is applied to the elastichalf- 
plane y < 0 and, that the boundary Y = 0 is free from external forces. Then the 
stress components satisfy the following boundary conditions : 

cry = zxy = 0, y=o (1) 

The temperature field satisfies the boundary value problem for Laplace equation 


